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For the infinite-Prandtl-number limit of the Boussinesq equations, the enhancement of
vertical heat transport in Rayleigh–Bénard convection, the Nusselt number Nu, is
bounded above in terms of the Rayleigh number Ra according to Nu � 0.644 ×
Ra1/3[log Ra]1/3 as Ra → ∞. This result follows from the utilization of a novel logarith-
mic profile in the background method for producing bounds on bulk transport,
together with new estimates for the bi-Laplacian in a weighted L2 space. It is a quan-
titative improvement of the best currently available analytic result, and it comes
within the logarithmic factor of the pure 1/3 scaling anticipated by both the classical
marginally stable boundary layer argument and the most recent high-resolution
numerical computations of the optimal bound on Nu using the background method.

1. Introduction
Thermal convection processes play an important role in a wide range of phenomena

in engineering, meteorology, oceanography, geophysics and astrophysics. Rayleigh–
Bénard convection, where a fluid layer between rigid plates is heated from below and
cooled from above, has emerged as a fundamental paradigm of nonlinear dynamics,
including instabilities and bifurcations, pattern formation, chaotic dynamics and fully
developed turbulence (Kadanoff 2001). One of the key features of Rayleigh–Bénard
convection is the enhancement of heat transport characterized by the Nusselt number
Nu, the ratio of the total heat flux to the purely conductive heat flux in the absence
of fluid flow. The dependence of Nu on the Rayleigh number Ra, the usual non-
dimensional measure of the applied temperature gradient, is of particular interest. For
fluids presumed to be well-described by the Boussinesq approximation, the single non-
dimensional material parameter that distinguishes different substances is the Prandtl
number Pr, the ratio of the fluid’s kinematic viscosity to its thermal diffusivity. In this
paper we derive mathematically rigorous and quantitatively precise estimates for Nu
as a function of Ra for the Boussinesq model in the infinite-Prandtl-number limit.

The derivation of physically relevant upper bounds for convective heat transport
has a long history beginning with Howard’s seminal variational formulation (Howard
1963, 1972) and Busse’s subsequent multiple boundary layer theory (Busse 1969, 1978).
A different approach to the analysis that has come to be known as the ‘background
method’ was introduced several decades later (Doering & Constantin 1992, 1996).
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For Rayleigh–Bénard convection in arbitrary Prandtl number fluids, both methods
produce a high-Rayleigh-number bound on Nu proportional to Ra1/2 uniformly in Pr.
This 1/2 scaling (perhaps also with logarithmic modifications) has been conjectured
as the ultimate high-Rayleigh-number behaviour for fixed finite Pr (Kraichnan 1962;
Spiegel 1971; Grossmann & Lohse 2000) albeit with different Pr dependence for
the prefactor. Current experimental results for high Ra are somewhat controversial
(Chavanne et al. 1997; Glazier et al. 1999; Sommeria 1999; Niemela et al. 2000;
Roche et al. 2001; Chilla, Rastello & Chaumat 2004).

A compelling marginally stable boundary layer argument predicts the ‘classical’
scaling Nu ∼ Ra1/3 (Malkus 1954; Howard 1966) that is believed to persist into
the asymptotically high-Ra regime for infinite-Prandtl-number fluids (Grossmann &
Lohse 2000). Moreover, there are indications from recent direct numerical simulation
and laboratory experiments that the 1/3 scaling applies over significant ranges of Ra
even for Pr = O(1) (Amati et al. 2005; Nikolaenko et al. 2005; Funfschilling et al.
2005). The first upper bounds with 1/3 scaling exponent for infinite-Pr Rayleigh–
Bénard convection were proposed by Chan, who applied a sophisticated version
of Busse’s multiple boundary layer theory in the context of Howard’s approach
(Chan 1971). The utilization of additional assumptions in the asymptotic analysis,
however, meant that Chan’s prediction could not be regarded as a proof. Rigorous
analysis using the background method produced an upper bound ∼Ra2/5 (Doering &
Constantin 2001) and the 2/5 exponent was subsequently shown to be sharp for the
background method restricted to monotonic background temperature profiles (Otero
2002; Plasting 2004). The exponent was later lowered further to 4/11 using additional
information from the maximum principle for the temperature equation (Yan 2004),
but the best rigorous high-Ra bound on Nu previously proven was ∼Ra1/3[lnRa]2/3

employing both the maximum principle and a delicate singular-integral analysis
(Constantin & Doering 1999).

Most recently an extremely careful and sophisticated numerical and boundary
layer analysis of the variational problem for the optimal background profile has both
clarified the subtlety of Chan’s asymptotic theory and reaffirmed the pure scaling
bound, predicting a high-Ra limit of the form Nu � 0.139 × Ra1/3 (Ierley, Kerswell &
Plasting 2006). That study has confirmed that the optimal background profile is
indeed not monotonic.

In this paper we will use the conventional background analysis – no need for the
maximum principle – and a non-conventional but nevertheless simple non-monotonic
background profile with a ‘log-layer’ in the bulk to derive the asymptotic Ra → ∞
bound

Nu � 0.644 × Ra1/3[lnRa]1/3. (1.1)

This new analytical result relies on a novel estimate for the bi-Laplacian operator re-
lating the vertical velocity to temperature fluctuations in a weighted L2 function space.
While (1.1) represents a modest quantitative improvement over the best previously
available rigorous analytic (i.e. not relying on computational solutions or additional
asymptotic hypotheses) bound, the utilization of a non-monotonic profile to qualita-
tively improve the estimate is an important development for the background method.

The remainder of this paper is organized as follows. In the next section we set the
stage by defining the model and the variables and reviewing the background method
for bounding Nu in terms of Ra. In § 3 we construct the logarithmic background
profile and apply the estimate for the bi-Laplacian operator to prove the stated
bound (1.1). Section 4 contains a discussion of the result and some directions for
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further investigation. The key mathematical estimate necessary for the proof is derived
in the Appendix.

2. Background method
The infinite-Prandtl-number limit of the Boussinesq equations for the temperature

T (x, y, z, t), the velocity u(x, y, z, t) = iu + jv + kw and the pressure p(x, y, z, t) are

Ṫ + u · ∇T = �T, (2.1)

∇p = �u + Ra k T , (2.2)

0 = ∇ · u, (2.3)

where Ra is the conventional Rayleigh number and we adopt the standard non-
dimensional variables. The spatial domain is (x, y, z) ∈ [0, Lx] × [0, Ly] × [0, 1] with
periodic boundary conditions in the horizontal (x and y) directions. In the vertical (z)
direction the boundary conditions are T = 1 and u = 0 at z = 0, and T = 0 and u = 0 at
z = 1. The no-slip velocity boundary conditions together with (2.3) imply ∂zw =0 for
z = 0 and 1 as well. Recent research has rigorously established the quantitative validity
of this model in the Pr → ∞ limit of the full Boussinesq equations (Wang 2004).

Consider the decomposition

T (x, z, t) = τ (z) + θ(x, y, z, t), (2.4)

where the ‘background’ temperature profile τ (z) satisfies the inhomogeneous boundary
conditions τ (0) = 1 and τ (1) = 0 so that the ‘fluctuation’ θ(x, y, z, t) satisfies
homogeneous boundary conditions at z = 0 and 1. Substituting (2.4) into (2.1) yields
the fluctuation evolution equation

θ̇ + u · ∇ θ = −wτ ′ + �θ + τ ′′. (2.5)

The Nusselt number, the space–time-averaged vertical heat flux in units of the
steady state conduction heat flux, is

Nu := 〈|∇T |2〉 =

∫ 1

0

(τ ′)2 dz + 〈|∇θ |2〉 − 2〈θτ ′′〉, (2.6)

where 〈·〉 denotes the space–time average defined by

〈f 〉 = lim sup
t→∞

1

t

∫ t

0

1

LxLy

∫ Lx

0

∫ Ly

0

∫ 1

0

f (x, y, z, t ′) dz dy dx dt ′.

The last term on the right-hand side of (2.6) was obtained via integration by parts
in z. Averaging 2 × θ × (2.5) with appropriate integrations by parts and adding (2.6)
yields

Nu =

∫ 1

0

(τ ′)2 dz − 〈|∇θ |2 + 2τ ′wθ〉. (2.7)

The background method is based on the following observation: if the background
profile τ (z) is chosen such that

Q(τ ){θ} := 〈|∇θ |2 + 2τ ′wθ〉 � 0 (2.8)

for every θ(x, y, z) satisfying homogeneous boundary conditions (with the associated
function w(x, y, z) defined by (2.2), (2.3), and homogeneous boundary conditions),
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then the Dirichlet integral of τ (z) is an upper bound for the Nusselt number, i.e.

Nu �

∫ 1

0

(τ ′)2 dz. (2.9)

The objective of the background variational method is to construct profiles that
minimize (2.9) subject to the constraint (2.8).

Eliminating the pressure in (2.2) leads to a direct relationship between θ(x, y, z)
and w(x, y, z):

�2w = −Ra �Hθ, (2.10)

where �H = ∂2
x + ∂2

y . In terms of horizontally Fourier-transformed variables θ̂ k(z) and
ŵk(z), this relation is (

k2 − d2

dz2

)2

ŵ = Ra k2θ̂ ,

and the constraint (2.8) is fulfilled if for every wavenumber k

Q̂
(τ )
k {θ̂ k} :=

∫ 1

0

[∣∣∣∣dθ̂ k

dz

∣∣∣∣
2

+ k2|θ̂ k|2 + τ ′(θ̂ kŵ
∗
k + θ̂ ∗

kŵk)

]
dz � 0.

For the remainder of this paper the analysis proceeds wavenumber by wavenumber
so from this point onward we drop the hats and subscripts on Q(τ ), θ(z) and w(z).
Henceforth the goal is to produce a background profile τ (z) with the smallest possible
Dirichlet integral satisfying τ (0) = 1 and τ (1) = 0, and such that for every real k2 > 0,

Q(τ ){θ} =

∫ 1

0

(|θ ′|2 + k2|θ |2 + 2τ ′Re[θw∗]) dz � 0 (2.11)

for every complex-valued function θ(z) satisfying θ(0) = 0 = θ(1), where w(z) solves

k4w − 2k2w′′ + w′′′′ = Ra k2θ (2.12)

with boundary conditions

w(0) = 0 = w(1), w′(0) = 0 = w′(1). (2.13)

The first two terms in Q(τ ) are manifestly positive while the last is indefinite.
The conventional intuition for applications of the background method has been

to choose test profiles such that τ ′(z) ≈ 0 in the bulk with the prescribed values
for τ at z = 0 and z = 1 enforced through the introduction of thin boundary layers.
The quadratic form Q(τ ) is increasingly positive as the width of the boundary layers
decreases, but the Dirichlet integral of τ (z) is then also increasingly large. The
challenge is to minimize the Dirichlet integral of τ (z) subject to the constraint that
Q(τ ) is a non-negative quadratic form. In this paper we utilize a class of logarithmic
background profiles τ (z) with terms ∼ ln z in the bulk so that τ ′(z) involves terms
∼ z−1. The key to the result is that while the ‘stable’ stratification in τ (z) would appear
to increase the Dirichlet integral, the price paid is offset by a significant contribution
to the positivity of Q(τ ) from the z−1Re[θ(z)w(z)∗] terms in the bulk.

3. Logarithmic background profile and the upper bound
We restrict attention to the high-Ra behaviour and hence tailor the analysis to the

asymptotic regime; quantitative improvements in the bounds are certainly possible
for lower values of Ra. The heat transport bound derived in this section depends
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Figure 1. Background temperature profile used in the analysis. The boundary layers are linear
in z while the profile τ (z) ∼ log(z/(1 − z)) in the bulk. The boundary layer thickness here is
δ = 1

20
.

crucially on the following fact that is proved in the Appendix: for θ(z) ∈ L2[0, 1] and
w(z) satisfying (2.12) and (2.13),

Re

∫ 1

0

θw∗

z
dz �

2

Ra

∫ 1

0

|w|2
z3

dz. (3.1)

Let δ ∈ (0, 1
2
) and define the background profile

τ (z) =

⎧⎪⎨
⎪⎩

1 − z/δ, 0 � z � δ,
1
2

+ λ(δ) ln (z/(1 − z)), δ � z � 1 − δ,

(1 − z)/δ 1 − δ � z � 1,

(3.2)

where

λ(δ) =
1

2 ln ((1 − δ)/δ)
. (3.3)

An example of this one-parameter family is illustrated in figure 1. The boundary layer
thickness δ will be small when Ra is large. The Dirichlet integral of τ (z) is easily
evaluated: ∫ 1

0

(τ ′)2 dz =
2

δ

{
1 + O

(
1

[ln δ]2

)}
as δ → 0. (3.4)

The objective now is to show that for a given (high) value of Ra, we may choose δ

so that Q(τ ) � 0 for all θ(z) with homogeneous boundary conditions. That value of δ

may then be inserted into (3.4) to produce a bound.
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The central idea is to use the stable stratification of τ (z) in the bulk to help
dominate negative contributions to Q(τ ) from the boundary layers. Recalling (2.11),

Q(τ ) =

∫ 1/2

0

(|θ ′|2 + k2|θ |2) dz +2λ

∫ 1

0

Re[θw∗]

z
dz − 2

∫ δ

0

(
1

δ
+

λ

z
+

λ

1 − z

)
Re[θw∗] dz

︸ ︷︷ ︸
Q

(τ )
lower

+

∫ 1

1/2

(|θ ′|2 +k2|θ |2)dz+2λ

∫ 1

0

Re[θw∗]

1−z
dz−2

∫ 1

1−δ

(
1

δ
+
λ

z
+

λ

1−z

)
Re[θw∗]dz

︸ ︷︷ ︸
Q

(τ )
upper

,

where we have simply added and subtracted λ/z + λ/(1 − z) in the boundary layers,
reorganized, and split Q(τ ) into two components. Identical analysis may be applied to
each component independently; we carry it out explicitly only for the lower portion.

Dropping the k2|θ |2 term and utilizing (3.1), we have

Q
(τ )
lower �

∫ 1/2

0

|θ ′|2 dz +
4λ

Ra

∫ 1

0

|w|2
z3

dz − 2

∫ δ

0

(
1

δ
+

λ

z
+

λ

1 − z

)
|θ | |w| dz. (3.5)

The magnitude of the last term in (3.5) is restated and estimated:

2

∫ δ

0

(
1

δ
+

λ

z
+

λ

1 − z

)
|θ | |w| dz = 2

∫ δ

0

(
1

δ
+

λ

z
+

λ

1 − z

)
z2

(
|θ |
z1/2

) (
|w|
z3/2

)
dz

� 2

(
sup

0<z<1/2

|θ(z)|
z1/2

) ( ∫ δ

0

z4

[
1

δ
+

λ

z
+

λ

1 − z

]2

dz

)1/2 (∫ 1

0

|w|2
z3

dz

)1/2

. (3.6)

Because θ(0) = 0, for z ∈ [0, 1/2] we have

|θ(z)| =

∣∣∣∣
∫ z

0

θ ′(z̃) dz̃

∣∣∣∣ � z1/2

(∫ 1/2

0

|θ ′(z̃)|2 dz̃

)1/2

,

so the supremum in (3.6) is bounded by the L2-norm (over [0, 1/2]) of θ ′(z). Then
applying Young’s inequality to (3.6),

2

∫ δ

0

(
1

δ
+

λ

z
+

λ

1 − z

)
|θ | |w| dz

�

∫ 1/2

0

|θ ′|2 dz +

∫ δ

0

z4

(
1

δ
+

λ

z
+

λ

1 − z

)2

dz

∫ 1

0

|w|2
z3

dz.

Inserting this into (3.5) we conclude that

Q
(τ )
lower �

[
4λ

Ra
−

∫ δ

0

z4

(
1

δ
+

λ

z
+

λ

1 − z

)2

dz

] ∫ 1

0

|w|2
z3

dz. (3.7)

Noting that

∫ δ

0

z4

(
1

δ
+

λ

z
+

λ

1 − z

)2

dz =
δ3

5

{
1 + O

(
1

| ln δ|

)}
as δ → 0,
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a sufficient asymptotic condition for the non-negativity of Q
(τ )
lower (and also Q(τ )

upper and

hence Q(τ )) is

Ra δ3 = 20λ =
10

ln((1 − δ)/δ)
.

This is satisfied asymptotically as Ra → ∞ by

δ ∼
(

30

Ra lnRa

)1/3

.

Inserting this into the Dirichlet integral for the upper bound we arrive at the result
announced in (1.1):

Nu �

∫ 1

0

(τ ′)2 dz ∼ 2

δ
∼ 2

(
Ra lnRa

30

)1/3

= 0.64366 · · · × Ra1/3 [ln Ra]1/3.

4. Discussion
The upper bound on Nu derived in this paper is the best rigorous analytical heat

transport estimate currently available for infinite-Prandtl-number convection. Modulo
the [lnRa]1/3 factor, it displays the classical Ra1/3 scaling that was theoretically
conjectured over half a century ago (Malkus 1954) and within the last year shown via
sophisticated computational and asymptotic analysis to be the best upper bound that
can be expected from the background method (Ierley et al. 2006). The quantitative
improvement of the bound derived here over previous results may be regarded as
modest, and the presence of the logarithmic factor suggests that there is still room for
progress, but nevertheless the analysis is important for understanding the mechanism
by which the non-monotonic background profile improves the bound. The background
method can be interpreted as a mathematically rigorous version of the marginally
stable boundary layer theory, so the result of our analysis may be interpreted as a
stability result for the background profile.

In its simplest form, the marginally stable boundary layer theory may be stated as
follows. The boundary layer near the rigid walls where the fluid motion is negligible
is of a thickness δ such that as a convection layer in its own right, it is precisely
marginally stable. Because the heat transport is totally conductive in the boundary
layer, Nu ∼ δ−1. Hence the goal is to deduce the Rayleigh-number dependence of the
boundary layer thickness. Presumably the boundary layer behaves like a Rayleigh–
Bénard convection system with the wall temperature imposed on one side and the
mean temperature imposed at the interface with the (turbulent) bulk, assumed to be
approximately isothermal. While the velocity boundary conditions on the wall side
of the boundary layers are definitely no-slip, it is not clear what the appropriate
boundary condition at the bulk interface should be. In any case the stability criterion
should be that the Rayleigh number based on the boundary layer parameters is equal
to a critical Rayleigh number, an absolute constant for the purpose of this argument.
Then because the boundary-layer Rayleigh number is proportional to δ3 and the
temperature drop across the boundary layer – half the total temperature drop – and
all the other parameters are the same as for the full system characterized by the full
Rayleigh number Ra, it is easy to conclude that δ ∼ Ra−1/3.

In the background method on the other hand, the positivity condition (2.8) on the
quadratic form Q(τ ){θ} is precisely the nonlinear energy stability condition (Joseph
1967; Straughan 1992) – at Rayleigh number 2Ra – of the profile τ (z) if it is a steady



236 C. R. Doering, F. Otto and M. G. Reznikoff

conduction solution of the system. (Of course a heat source of the form s(z) = −τ ′′(z)
would be required in the temperature equation for τ (z) to be a steady conduction
solution.) Nonlinear energy stability is a sufficient condition for absolute stability,
in contrast to linear theory which is capable of producing sufficient conditions for
instability. These two stability criteria happen to coincide for basic Rayleigh–Bénard
systems modelled by the Boussinesq equations with a linear conduction temperature
profile, so the distinction does not enter into the heuristic considerations of the
marginally stable boundary layer theory as described above.

In the language of stability theory, therefore, the background method employed in
this work may be summarized by the statement: ‘If τ (z) is a nonlinearly stable steady
temperature profile at Rayleigh number Ra, then its Dirichlet integral (proportional
to the entropy production rate) is an upper limit to Nu at Rayleigh number 1

2
Ra’.

Thus the upper bound relies not just on the ‘stability of the boundary layer’ – an
ill-defined concept due to vaguely specified boundary conditions and the ambiguous
notion of stability employed – but rather on the precisely defined nonlinear energy
stability of the entire profile with the physical boundary conditions. The best upper
bound is obtained by balancing this physical stability requirement with the minimum
entropy production goal.

In this light the emergence of the non-monotonic background profile may be
understood in terms of stability enhancement. Boundary layers are clearly necessary
at high Rayleigh numbers when the simple linear conduction profile is unstable. Stable
stratification in the bulk inhibits convection there to provide a stable interface for the
unstably stratified boundary layers, a much more robust interface than that produced
by an isothermal core as in the näıve picture of the profile. The boundary layers
must be kept sufficiently thin in order to ensure the stability of the entire profile, a
requirement that naturally suggests the 1/3 scaling as in the heuristic argument. The
quantitative price of ensuring that the bulk provides a sufficiently firm interface to
contain the boundary layers – at least in this rigorous analysis – is the additional
logarithmic factor.

Non-monotonic mean temperature profiles with a stably stratified bulk have been
observed in direct numerical simulations of turbulent convection, both for infinite
Prandtl number (Sotin & Labrosse 1999) and for finite Prandtl numbers (Breuer
et al. 2004). In the case of infinite Prandtl number we are able to enhance the
nonlinear stability of background profiles with such a stably stratified bulk because
of the strong positive correlation between the vertical velocity w and temperature
fluctuation θ expressed in the explicit slaving of w to θ in (2.10) and (2.12). When the
Prandtl number is finite, however, w is a dynamical variable in its own right so we do
not have access to such tight control on the product of w and θ . Even so, the dynamics
generates a sturdy coupling of these variables. Indeed, the correlation of w and θ is
precisely Nu−1, so the stronger the heat transport, the stronger the correlation. As the
background method is currently formulated, though, we are unable to take advantage
of this feature in conjunction with a non-monotonic profile to affect the scaling of the
upper bounds for finite-Prandtl-number fluids. A thorough computational evaluation
of the optimal background profile for the variational problem for finite-Pr convection
(Plasting & Kerswell 2003) yielded a monotonic profile and the Ra1/2 scaling for the
upper bound. Thus in order to exploit the increased stability that may be achieved
with a stably stratified core to derive qualitatively improved bounds for finite Prandtl
numbers, it is apparent that the background variational problem must be augmented
with more information, i.e. other constraints derived from the full equations of motion,
to effectively utilize the coupling of w and θ .
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Appendix
Here we prove the key estimate (3.1) used to establish the positivity of Q(τ ) with the

non-monotonic logarithmic background profiles. We begin the analysis by stating the

Proposition. If 0 <a <b < ∞, the smooth function w(z) satisfies

w(a) = 0 = w(b), w′(a) = 0 = w′(b), (A 1)

and θ(z) is defined by (2.12), then

Re

∫ b

a

θw∗

z
dz �

2

Ra

∫ b

a

|w′|2
z

dz �
2

Ra

∫ b

a

|w|2
z3

dz. (A 2)

These weighted inequalities are related to Muckenhoupt estimates for singular
integrals (Stein 1993, § 5.4). For the application in this work we need (3.1), stated here
as a

Corollary. For θ(z) ∈ L2[0, 1] and w(z) satisfying (2.12) and (2.13),

Re

∫ 1

0

θw∗

z
dz �

2

Ra

∫ 1

0

|w|2
z3

dz. (A 3)

Proof of the Corollary. By a standard approximation argument we may assume that
θ(z) and w(z) are smooth. For ε > 0 let θε(z) and wε(z) be θ(z − ε) and w(z − ε)
respectively. Then wε(z) satisfies (A 1) with a = ε, b = 1 + ε, so the proposition gives

Re

∫ 1+ε

ε

θεw
∗
ε

z
dz �

2

Ra

∫ 1+ε

ε

|wε |2
z3

dz.

Changing variables,

Re

∫ 1

0

θw∗

z + ε
dz �

2

Ra

∫ 1

0

|w|2
(z + ε)3

dz. (A 4)

For θ(z) ∈ L2, the vertical velocity w(z) satisfies |w(z)| � Cz2 where C depends only
on Ra, k2 and the L2 norm of θ(z). This follows from regularity theory for (2.12) plus
Sobolev embedding; see Doering & Constantin (2001) for an explicit proof in this
context. Hence |θ(z)w(z)∗|/z and |w(z)|2/z3 are integrable functions on [0, 1] so we
may let ε → 0 to recover (3.1).

We will use two lemmas in the proof of the proposition.

Lemma 1. For smooth functions w(z) satisfying (A 1),

(i) − Re

∫ b

a

w′′w∗

z
dz =

∫ b

a

z

∣∣∣∣
(

w

z

)′∣∣∣∣
2

dz,

(ii) Re

∫ b

a

w′′′′w

z
dz =

∫ b

a

z

∣∣∣∣
(

w

z

)′′∣∣∣∣
2

dz.
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Proof of Lemma 1. Let ζ (z) := w(z)/z and note that ζ (z) satisfies the same
homogeneous boundary conditions (2.13) as w(z). Successive integrations (many
by parts) yield

−Re

∫ b

a

w′′ w
∗

z
dz = Re

∫ b

a

w′
(

w∗

z

)′

dz = Re

∫ b

a

(z ζ )′(ζ ∗)′ dz

=

∫ b

a

{
z|ζ ′|2 + Re[ζ ∗ζ ′]

}
dz

=

∫ b

a

{
z|ζ ′|2 + 1

2
(|ζ |2)′} dz =

∫ b

a

z|ζ ′|2 dz.

The proof of (ii) is similar:

Re

∫ b

a

w′′′′ w
∗

z
dz = Re

∫ b

a

w′′
(

w∗

z

)′′

dz = Re

∫ b

a

(zζ )′′(ζ ∗)′′ dz

=

∫ b

a

{z|ζ ′′|2 + 2Re[ζ ′(ζ ∗)′′]} dz

=

∫ b

a

{z|ζ ′′|2 + (|ζ ′|2)′} dz =

∫ b

a

z|ζ ′′|2 dz.

Lemma 2. Let ζ (z) ∈ C∞[a, b] satisfy the same homogeneous boundary conditions as
w(z) in (A 1). Then:∫ b

a

|ζ |2
z

dz �

(∫ b

a

z|ζ |2 dz ×
∫ b

a

z|ζ ′′|2 dz

)1/2

. (A 5)

Proof of Lemma 2. Define φ(z) := ζ (z)/z and observe that φ(z) satisfies the same
homogeneous boundary conditions as ζ (z). Then the statement to be proved is∫ b

a

z|φ|2 dz �

( ∫ b

a

z3|φ|2 dz

∫ b

a

z|zφ′′ + 2φ′|2 dz

)1/2

. (A 6)

Notice first that∫ b

a

z|zφ′′ + 2φ′|2 dz =

∫ b

a

z3|φ′′|2 dz +

∫ b

a

[2z2φ′(φ∗)′′ + 2z2(φ∗)′φ′′ + 4z|φ′|2] dz

=

∫ b

a

z3|φ′′|2 dz +

∫ b

a

(2z2|φ′|2)′ dz =

∫ b

a

z3|φ′′|2 dz,

so (A 6), to be proved, becomes∫ b

a

z|φ|2 dz �

( ∫ b

a

z3|φ|2 dz

∫ b

a

z3|φ′′|2 dz

)1/2

. (A 7)

To see (A 7) it is sufficient to establish∫ b

a

z|φ|2 dz �

( ∫ b

a

z3|φ|2 dz

∫ b

a

z|φ′|2 dz

)1/2

(A 8)

and ∫ b

a

z|φ′|2 dz �

∫ b

a

z3|φ′′|2 dz. (A 9)
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For (A 8), integrate by parts and use the Cauchy-Schwarz inequality:∫ b

a

z|φ|2 dz =

∫ b

a

(z2)′ 1

2
|φ|2 dz = −Re

∫ b

a

z2φ∗φ′ dz

�

( ∫ b

a

z3|φ|2 dz

∫ b

a

z|φ′|2 dz

)1/2

.

Likewise for (A 9),∫ b

a

z|φ′|2 dz =

∫ b

a

(z2)′ 1

2
(φ′)2 dz = −Re

∫ b

a

z2(φ∗)′φ′′ dz

�

(∫ b

a

z|φ′|2 dz

∫ b

a

z3|φ′′|2 dz

)1/2

.

Proof of the Proposition. Using (2.12) and letting ζ (z) := w(z)/z,

Re

∫ b

a

θw∗

z
dz = Re

∫ b

a

(k4w − 2k2w′′ + w′′′′)w∗

Ra k2z
dz

=
k2

Ra

∫ b

a

|w|2
z

dz − 2

Ra
Re

∫ b

a

w′′w∗

z
dz +

1

Ra k2
Re

∫ b

a

w′′′′w∗

z
dz

=
k2

Ra

∫ b

a

z|ζ |2 dz +
2

Ra

∫ b

a

z|ζ ′|2 dz +
1

Ra k2

∫ b

a

z|ζ ′′|2 dz

�
2

Ra

∫ b

a

z|ζ ′|2 dz +
2

Ra

(∫ b

a

z|ζ |2 dz

∫ b

a

z|ζ ′′|2 dz

)1/2

,

where we used Lemma 1 in the third line and Young’s inequality (i.e., a2 + b2 � 2ab)
in the fourth. Because ζ (z) satisfies the same boundary conditions as w(z), Lemma 2
yields

Re

∫ b

a

θw∗

z
dz �

2

Ra

∫ b

a

z|ζ ′|2 dz +
2

Ra

∫ b

a

|ζ |2
z

dz. (A 10)

On the other hand w(z) = zζ (z) implies∫ b

a

|w′|2
z

dz =

∫ b

a

[
|ζ |2
z

+ 2 Re (ζ ∗ζ ′) + z|ζ ′|2
]

dz =

∫ b

a

|ζ |2
z

dz+

∫ b

a

z|ζ ′|2 dz, (A 11)

so that combining (A 10) and (A 11) we deduce

Re

∫ b

a

θ w∗

z
dz �

2

Ra

∫ b

a

|w′|2
z

dz.

Finally, the second inequality in (A 2) follows from∫ b

a

|w|2
z3

dz = −
∫ b

a

(z−2)′ 1

2
|w|2 dz = Re

∫ b

a

w∗w′

z2
dz

�

(∫ b

a

|w|2
z3

dz

∫ b

a

|w′|2
z

dz

)1/2

.
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